Dexmedetomidine inhibits epileptiform activity in rat hippocampal slices
نویسندگان
چکیده
Purpose: Our study aimed to investigate the effects of dexmedetomidine on basal synaptic transmission in the rat hippocampus. We also examined dexmedetomidine in an animal epilepsy model, with further investigation into the role of specific antagonists on the alpha-2 adrenoceptors and the imidazoline receptors. Methods: All of the experiments used the CA1 region of hippocampal brain slices prepared from Sprague-Dawley rats. Epileptiform discharges were induced by perfusing Mg2+-free artificial cerebrospinal fluid (ACSF). We first investigated the effects of dexmedetomidine on population spike (PS) amplitudes and field excitatory postsynaptic potentials (fEPSP) amplitudes in normal ACSF. We then investigated the effects of dexmedetomidine on the amplitudes of the first three PSs and the discharge duration in Mg2+-free ACSF or in normal ACSF containing 10 μM bicuculline. Results: Dexmedetomidine depressed PS amplitudes and fEPSP without affecting the paired-pulse inhibition in normal ACSF. Dexmedetomidine inhibited the epileptiform activity produced by Mg2+-free ACSF in a dose-dependent manner. Dexmedetomidine completely abolished the epileptiform activity induced by bicuculline. In the presence of yohimbine, dexmedetomidine had no significant effect on epileptiform activity. In the presence of efaroxan and idazoxan, dexmedetomidine significantly (P < 0.05) increased and slightly attenuated the amplitude of the epileptiform activity, respectively. Conclusion: These results suggest that dexmedetomidine depresses the glutamatergic excitatory synaptic transmission, but may not affect the inhibitory synaptic transmission mediated via the GABAA-receptor in rat hippocampal slices. The anticonvulsant action of dexmedetomidine is mediated mainly via alpha-2 adrenoceptors. In addition, imidazoline type 1 and type 2 receptors are also involved in the effect of dexmedetomidine on the epileptiform activity.
منابع مشابه
Modulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices
Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...
متن کاملProconvulsive effect of hydrochlorothiazide in an in vitro rat seizure model
Objective(s):Protective effects of diuretics, particularly of hydrochlorothiazide (HCT), for the development of seizure attacksepilepsy have been described in vivo. However, itsthe mechanism of action of HCT is unknownneeds to be elucidated. Materials and Methods: Extracellular field potentials were recorded from the CA1- and CA3-subfields of the hippocampus of rats. Epileptiform discharges wer...
متن کاملElectrophysiological characteristics of hippocampal CA1 neurons after spreading depression-triggered epileptic activity in brain slices
Introduction: A close link between spreading depression (SD) and several neurological diseases such as epilepsy could be demonstrated in many experimental studies. Epilepsy is among the most common brain disorders. Despite a large number of investigations, its mechanisms have not been yet well elucidated. Hippocampus is one of the important structures involved in seizures. The aim of this st...
متن کاملEffects of visual deprivation on epileptic activity in mature rat visual cortex
Effects of visual deprivation on the induction of epileptiform activity were studied in layer II/III of mature rat primary visual cortex. Field potentials were evoked by stimulation of layer IV in slices from control and dark-reared (OR) rats. Picrotoxin (PTX)-induced epileptic activity was characterized by spontaneous and evoked epileptic field potentials (EFPs). The results showed that OR s...
متن کاملMultiple actions of methohexital on hippocampal CA1 and cortical neurons of rat brain slices.
To explore the mechanism by which methohexital (MTH) activates epileptiform activity in patients with epilepsy, we examined the effects of MTH on hippocampal CA1 and neocortical neurons via extracellular and whole-cell patch-clamp recordings in rat brain slices. Perfusion of slices with 10 to 100 microM MTH caused no significant change in glutamatergic transmission in the hippocampal CA1 region...
متن کامل